Reconnaissance faciale : pourquoi elle se trompe, et pourquoi c’est grave
Imaginez cette scène. Un salarié arrive au travail et son badge facial ne le reconnaît pas. Un client se fait bloquer par un système « automatique de vérification d’identité ». Un candidat à l’embauche est écarté avant même d’être vu par un humain. Le point commun ? Ce n’est pas la personne qui a changé. C’est la machine qui s’est trompée. Le plus inquiétant ? Ces erreurs ne touchent pas tout le monde de la même façon. Dans cet article, je vais expliquer simplement :-
- Pourquoi la reconnaissance faciale se trompe plus souvent sur certains visages
-
- Pourquoi vos propres réglages et consignes peuvent amplifier le problème
-
- Ce que vous pouvez mettre en place dès maintenant pour éviter le risque éthique, légal et réputationnel
1. D’où viennent ces erreurs ?
Le problème des données d’apprentissage
En 2018, Joy Buolamwini (MIT) et Timnit Gebru ont étudié plusieurs systèmes de reconnaissance faciale du marché. Résultat :-
- Jusqu’à 34,7 % d’erreurs pour identifier des femmes à peau foncée
-
- 0,8 % d’erreurs pour identifier des hommes à peau claire
Traduction simple : La machine reconnaît mieux certains visages que d’autres. Elle est plus « fiable » pour hommes + peau claire que pour femmes + peau foncée.Pourquoi ? Parce qu’elle a été entraînée principalement sur certains types de visages, pas tous. Si votre IA n’a jamais « vu » assez de diversité pendant son entraînement, elle va mal reconnaître ces personnes plus tard. C’est mécanique. Un an plus tard, le NIST (organisme public américain) a confirmé le problème : jusqu’à 100 fois plus d’erreurs selon l’origine ethnique ou le sexe de la personne. Et ces erreurs ont eu des conséquences réelles : plusieurs Américains ont été arrêtés à tort après identification par des logiciels défaillants. Aux États-Unis, des personnes ont été arrêtées à tort parce qu’un logiciel les « reconnaissait » comme suspects. Elles étaient noires, et innocentes. Autrement dit :
Ce n’est pas un bug. C’est un biais systémique. Et ce biais, il faut le corriger avant qu’il ne fasse du tort à quelqu’un.Première vérité à accepter quand on parle de reconnaissance faciale :
L’IA n’est pas neutre. Elle ne traite pas tout le monde pareil.Pour une entreprise, ça veut dire deux choses :
-
- Risque humain : discrimination réelle sur des personnes réelles
-
- Risque business : mauvaise presse, plainte, question de conformité
2. Le deuxième problème est moins connu : ce que VOUS demandez à la machine
On pense souvent que « l’IA décide seule ». En réalité, elle fait ce qu’on lui dit de faire. Et là, deux cas existent.Cas 1 : Les systèmes classiques (contrôle d’accès, sécurité, pointage)
Ces systèmes fonctionnent par réglages. Vous choisissez par exemple :-
- À partir de quel niveau de certitude le système dit « oui c’est bien la même personne »
-
- Combien de fausses alertes vous acceptez
-
- Dans quelles zones du visage regarder en priorité (nez, yeux, mâchoire…)
-
- Vous mettez un seuil très haut pour « éviter la fraude »
-
- Résultat : certaines personnes doivent scanner leur visage 3 fois pour rentrer, et d’autres jamais
-
- Ça a l’air d’un détail technique… jusqu’au moment où quelqu’un dit « curieusement, ce sont toujours les mêmes qu’on refoule »
Cas 2 : Les nouveaux systèmes « IA avancée » qui comprennent le langage
On a maintenant des systèmes capables d’analyser des images à partir d’une consigne écrite, par exemple :-
- « Décris ce que tu vois sur cette vidéo. »
-
- « Repère les comportements suspects dans cette vidéo. »
Donc là aussi, c’est important :
Le biais ne vient pas seulement de la machine. Il vient aussi de la façon dont VOUS posez la question à la machine.Et ça, très peu d’organisations le maîtrisent aujourd’hui.
3. Effet domino : comment un mauvais réglage devient une injustice
Quand on réunit tout ça, on obtient un scénario très simple :-
- La technologie reconnaît mieux certains visages que d’autres
-
- Vous la configurez (ou lui parlez) d’une manière qui accentue la suspicion
-
- On prend une décision concrète basée là-dessus
-
- Refuser l’accès à une personne au travail
-
- une personne bloquée à la frontière,
-
- Surveiller « particulièrement » certains clients dans un magasin
-
- Faire intervenir la sécurité
-
- ou pire, une arrestation abusive.
4. « Est-ce que c’est légal ? »
C’est la question que tout dirigeant finit par poser. Réponse courte : ça dépend comment vous l’utilisez. L’Union européenne a adopté l’AI Act en 2024. C’est la première grande loi sur l’IA. Ce qu’elle dit, en résumé :-
- Certaines pratiques sont interdites, par exemple créer des bases géantes de visages en aspirant les photos des gens sans leur consentement
-
- L’usage de la reconnaissance faciale dans l’espace public est très limité et doit passer par des conditions strictes
-
- Certains usages (par exemple pour identifier quelqu’un après un incident) sont considérés « à haut risque » : ils doivent être surveillés, audités, validés, et surtout supervisés par des humains
Un cas concret en France : les sas Parafe dans les aéroports
Depuis 2009, la France installe dans ses aéroports des sas Parafe (“passage automatisé rapide aux frontières extérieures”). Ces bornes utilisent la reconnaissance faciale pour accélérer le contrôle des passeports biométriques. Si vous êtes déjà passé par Roissy, Orly, Lyon ou Bordeaux, vous avez peut-être vu ces sas automatiques avec reconnaissance faciale. Vous scannez votre passeport, vous regardez la caméra, et vous passez en 10-15 secondes au lieu d’attendre à la file classique. Depuis 2018, le dispositif PARAFE a bien évolué : en août 2025, il est officiellement décrit comme “combiné à une technologie biométrique d’authentification basée sur la reconnaissance faciale.Ce qui fonctionne plutôt bien
Type d’usage acceptable :-
- C’est de l’authentification 1:1 : le système vérifie que vous êtes bien la personne du passeport, il ne cherche pas « qui vous êtes » dans une grande base de données
-
- Consentement volontaire : vous pouvez choisir la file classique si vous préférez
-
- Pas de stockage : les données ne sont utilisées que pendant votre passage, puis effacées
-
- Transparence relative : le site Service-Public.fr explique comment ça marche et quelles bases de données sont interrogées (fichier des personnes recherchées, etc.)
Résultat : Plus de 100 sas installés à Roissy et Orly depuis 2018, avec un gain de temps réel pour les passagers éligibles (majeurs, passeport biométrique, certaines nationalités).En théorie, tout va bien :
-
- passage plus rapide,
-
- plus de contact physique,
-
- moins de files d’attente.
Attention aux angles morts
Premier problème : l’opacité sur l’équité Nulle part on ne trouve publiquement :-
- Les taux d’échec selon les profils (âge, genre, couleur de peau)
-
- Les tests d’équité réalisés avant déploiement
-
- Ce qu’on fait des personnes systématiquement refusées par le système
« Toutes les études convergent sur ce point : la courbe de stress du voyageur s’effondre une fois les formalités effectuées. Le panier moyen est directement proportionnel au temps disponible avant l’embarquement. »Traduction simple : On veut que vous passiez vite la frontière… pour que vous ayez plus de temps pour acheter en duty-free. ADP a investi 10 millions d’euros dans ces sas. Pas uniquement pour améliorer le service public. Aussi pour optimiser vos dépenses commerciales. Ce n’est pas illégal. Mais ça pose une question : la technologie sert-elle d’abord le voyageur ou le chiffre d’affaires de l’aéroport ? Troisième problème : l’extension progressive du périmètre Ce qui a commencé en 2009 comme un test limité est devenu :
-
- 2017-2018 : Passage aux empreintes digitales → reconnaissance faciale
-
- 2019 : Ouverture aux mineurs de 12 à 18 ans
-
- 2020 : Tests pour l’embarquement avec reconnaissance faciale
-
- Objectif ADP : « passage à l’ère du biométrique sur tout le parcours passager d’ici 2024-2025 »
Ce que ça nous apprend
Parafe n’est pas le pire usage de la reconnaissance faciale. C’est même plutôt bien fait comparé à d’autres systèmes. Mais il illustre trois risques classiques :-
- L’effet de normalisation : « Si ça marche aux frontières, pourquoi pas partout ? »
-
- L’opacité sur l’équité : On ne teste pas publiquement les biais
-
- La logique commerciale : La tech au service du retail, pas seulement du service public
-
- son extension à d’autres usages,
-
- ses angles morts techniques (les biais),
-
- les vraies raisons de son déploiement.
5. Que devez-vous mettre en place si vous utilisez (ou envisagez) ce genre d’outils ?
1. Mesurez les écarts de traitement
Avant le déploiement, testez le système sur des personnes réelles et différentes (peaux, âges, genres), pas seulement sur « l’équipe projet ». Regardez :-
- Qui est reconnu du premier coup ?
-
- Qui doit réessayer ?
-
- Qui est signalé « à risque » plus souvent ?
2. Décidez noir sur blanc ce que la machine a le droit de faire… et ce qu’elle n’a PAS le droit de faire
Par exemple : – « Le système peut aider à vérifier l’accès au bâtiment. » – « Le système NE PEUT PAS déclencher une alerte sécurité sans validation humaine. » « Le système NE PEUT PAS être utilisé pour dire qui a l’air ‘suspect’. » Ça doit être écrit. Sinon ça finit toujours par déraper, un jour ou l’autre.3. Documentez vos consignes
Notez noir sur blanc :-
- Comment vous posez la question au système
-
- Quels réglages vous avez choisis (les seuils)
-
- Pourquoi vous les avez choisis
-
- Qui valide
4. Formez les gens qui utilisent l’outil
Pas besoin de les transformer en ingénieurs IA. Mais ils doivent savoir :-
- Dans quels cas la machine peut se tromper
-
- Sur qui elle se trompe le plus souvent
-
- Qu’on ne prend jamais une décision lourde (refuser l’accès, appeler la sécu, etc.) sans relecture humaine
6. Pourquoi je fais ce travail
Soyons honnêtes. La plupart des organisations qui déploient ces systèmes ne cherchent pas à discriminer. Elles cherchent :-
- à aller plus vite,
-
- à réduire la fraude,
-
- à sécuriser un accès,
-
- à automatiser une partie du tri.
-
- Risque juridique (AI Act, plaintes, non-conformité)
-
- Risque réputationnel (« votre outil discrimine »)
-
- Risque social interne (vos propres équipes n’acceptent plus l’outil)
Concrètement, je vous aide à :
-
- Clarifier les usages et les limites de votre outil d’IA
-
- Réécrire des consignes plus claires et plus neutres
-
- Identifier les biais et les risques humains dans les usages
-
- Introduire des garde-fous humains simples
-
- Préparer vos équipes à parler d’éthique de façon concrète
FAQ
Est-ce que la reconnaissance faciale est illégale en Europe ? Non. Elle n’est pas totalement interdite. Mais certains usages sont déjà bloqués (par exemple créer des bases géantes de visages sans autorisation). D’autres usages sont considérés « à haut risque ». Ils exigent des tests, des garde-fous humains, et une conformité légale sérieuse. Pourquoi on dit qu’il y a du « biais » ? Parce qu’on a mesuré que ces systèmes se trompent beaucoup plus souvent sur certaines personnes (par exemple les femmes noires) que sur d’autres (par exemple les hommes blancs). Ces erreurs ont déjà mené à des arrestations injustes. Est-ce qu’on peut corriger ça complètement ? Pas à 100 %. Mais on peut réduire fortement le risque en testant le système sur des gens réels et différents, en formant les équipes, et en gardant une validation humaine. Dire « la machine a dit donc c’est vrai », ça, ce n’est plus défendable.Sources
Recherche scientifique-
- Buolamwini & Gebru (2018) — « Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification » (MIT Media Lab)
-
- NIST (2019) — Face Recognition Vendor Test (FRVT), rapports démographiques
-
- Berg et al. (2022) — « A Prompt Array Keeps the Bias Away«
-
- BiasICL (2025) — Étude sur les biais contextuels des modèles vision-langage
Documentation technique
-
- IBM Research (2018) — AI Fairness 360 Toolkit
-
- Microsoft (2024) — Documentation Azure Face API
-
- Université de Chicago (DSSG) — Aequitas
Réglementation
-
- Union Européenne (2024) — Artificial Intelligence Act (Règlement UE 2024/1689)
-
- European Digital Rights (EDRi, 2024) — EU’s AI Act fails to set gold standard for human rights
Rapports et enquêtes
-
- US Government Accountability Office (GAO, 2024) — Rapport sur l’usage de la reconnaissance faciale par les agences fédérales
Cas d’usage français
-
- Service-Public.fr (2025) — Documentation officielle du dispositif Parafe
-
- Thales/Gemalto — Fournisseur des sas Parafe (documentation technique)
-
- Aéroports de Paris (ADP) — Déploiement et communication sur les sas de reconnaissance faciale
-
- Challenges (2018) — Article « La vérité sur les sas Parafe dans les aéroports«
Cet article est une cocréation entre intelligence humaine et intelligence artificielle, puis révisé humainement pour garantir la clarté, le respect des personnes, et l’exactitude des sources.



